
Summary: Our new meshing paradigm is based on random sampling. 
Underground storage sites for carbon sequestration might fracture when receiving high pressure 
gases. When simulating this, we prefer random meshes because they produce more realistic cracks. 
We create hybrid meshes that conform to naturally occurring complex structures, such as long, thin 
layers with twisting, faulting, and pinch-offs.  

 Mesh points are from a maximal Poisson-disk sample. The boundary of the domain is 
sampled differently for primal (simplicial) and dual (Voronoi polyhedral) meshes. A polyhedral mesh is 
body-fitted, but its dual is not. Mesh elements have good quality.  

 Except for some minor log n operations when generating unbiased points, every step is local 
and can be done in constant time, leading to O(n) time and memory. The locality and fixed size of the 
steps facilitate scalability and also GPU implementations. Our point codes take less memory and time 
than the alternatives, and triangulating the points is competitive with Triangle. 

 Random Meshes for Carbon Sequestration 
 

1. Maximal Poisson-Disk Sampling (MPS) 
MPS selects random points {xi} = X, from a domain, D. There is an exclusion/inclusion radius r: 
no two sample points are closer than r to one another; and every location is within r of a sample. 
The probability P of selecting the next point xi from a disk-free region Ω	
   is proportional to Ω’s 
area. These properties lead to Delaunay meshes with uniformly random edge orientations.!
!
!
!
!
!
!
!
A maximal r-disk sample (1b) (1c) is equivalent to a maximal sample of non-overlapping r/2-disks, 
known as a random close sphere packing. They appear frequently in nature: e.g. sand, atoms in a 
liquid, trees in a forest. Processes generating them include random sequential adsorption in 
chemistry, and the hard-core Gibbs process in statistics. 

3. Constrained Delaunay Triangulation (CDT) 

Unit cubes with non-overlapping r/2 spheres.!
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We [4] simulated the injection of CO2 below a sub-scale model of a caprock layer. We used a Voronoi 
mesh. The initial fractures represent joints that were sealed, but reactivated by the injection into the 
reservoir below the caprock. Crack nucleation and growth derives from a limit surface of the allowable 
stress states. A cohesive law decays as the crack opens. The mesh randomness models epistemic 
uncertainty in the material strength. An ensemble of meshes predicts a range of plausible outcomes.  

6. Caprock Fracture 

Snapshots over time. Color represents maximum principal stress, with red being the most extreme.   
4. Voronoi Meshing 

A. Mesh       B. Clipped mesh                   C. Zoom-in                                                   D. Zoom-in  
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                  We sample non-convex domains,   
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5. GPU Codes and Performance 
Our serial CDT code [3] is close to the speed of the 
popular Triangle software. (But not for generating 
points.) Our GPU code is 2x faster. 

Iteration 0 end  Iteration 1 start  Iteration 2 start  Iteration 1 end 
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But it is difficult to mimic these natural or statistical 
processes with an efficient algorithm. The classic approach 
is dart-throwing: successively generate an unbiased point 
(dart) and reject it if it is too close to a prior point. It is pretty 
easy to get close to maximality, but placing darts in the last 
few uncovered voids may take nearly forever. 

In 2011, we published two methods [1,2] 
to solve this problem. They both use a 

background grid of squares to guide the 
process. The disks for a void (uncovered 
area) are local, and there are less than 

10 of them. 

[2]. Our second method is simpler and more memory efficient, especially for higher dimensions d. 
Instead of creating polygons, we use a flat quadtree to successively refine our approximation to 
the uncovered domain. This is very efficient, since cells are described by d indices and one global 
level: no tree, no pointers, no geometry. Prior approaches refine the quadtree locally, but this is not 
needed. Our method works in any dimension and has empirical time and memory complexity O(n).!

[1]. We gave the first optimal MPS algorithm satisfying all the criteria, in 2d. It constructs polygonal 
outer approximations to the remaining uncovered voids. To be bias free, our sampling process 
chooses from these polygons based on their area. Polygons are sufficiently close to the arc-gon 
voids, so that a constant fraction of the generated points are disk-free. Only O(n) dart throws are 
needed. It takes O(n log n) expected time and O(n) deterministic memory.  

2. Hybrid Meshing 
The hybrid mesher “glues together” different meshing algorithms. We have triangle, 
quadrilateral, and polyhedron meshes. An algebraic method generates structured quad 
meshes; otherwise points are generated using Poisson-disk samples. Meshes are conformal, 
with hanging nodes between primal and Voronoi regions. The MeshingGenie software will be 
released openly with Trilinos [6]. 

The CDT of a point is constructed in 
constant time: use the background 
grid to find potential neighbors, then 
use angular sorting and empty-circle 
checks. 

We [3] insert points to produce an unbiased maximal sampling, and provably get good quality 
triangles as a byproduct. In contrast Delaunay refinement algorithms insert deterministic 
points to remove poor-quality triangles, and get a biased maximal sampling as a byproduct.  

We protect the boundary by sampling a 
neighborhood of it before the interior. 
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We iterate over each sample point. Communication between the triangulations for different 
points is not required where the CDT is unique. The algorithm is O(n) in time and space. 

Edge Length Distribution
Internal Edges

Boundary Edges

Angle Distribution

Internal Triangle Angles

Boundary Triangle Angles

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Length Edge Ratio to r (bin min)

25 35 45 55 65 75 85 95 105 115 125
Angle (bin min degrees)

Our provable and empirical 
bounds on angles and 
edge lengths are 
comparable to Delaunay 
refinement methods. 

Our polyhedral mesh [5] is not the dual of a body-fitted simplicial mesh!  This is because we 
do not sample the boundary, except near reflex features. This is better because it gives 
random dihedrals at the boundary, leading to more realistic fracture simulations. The final 
mesh has bounded facet dihedrals and polyhedron aspect ratios.  
  

To construct a Voronoi cell, the background grid is very helpful, as it was for the CDT: gather 
all the nearby points in constant time; successively cut a bounding box by the Voronoi planes 
of the nearby points. The algorithm is O(n) in time and space, and works in 3d. 
 

Our GPU code uses a large pool of threads to 
generate points in parallel. To remain unbiased, ties 
between points with overlapping disks are broken 
using thread ids. Memory bandwidth and capacity 
are the limiting factors.  

Discrete algorithms are notoriously difficult to parallelize, due to random memory access patterns. 
Nonetheless, our GPU code beats the serial one by a factor of ten for generating points, and a factor 
of two for triangulating them. Our simpler serial algorithm [2] is faster and takes less memory than the 
best alternative, by Gamito. 


